DETERMINATION OF THE FORCE ACTING ON A
SPHERICAL OBSTACLE IN AN
UNDEREXPANDED JET

G. A. Akimov UDC 532.525:621,43,011

A method is proposed for determining the force acting on a spherical obstacle in an underexpanded
jet. The method is based on the application of the momentum law,

If the pressure distribution over the surface of a body is known, then the total force acting on it is de-
termined from the equation

N=— f pndS. @)
S
The distribution of the parameters of a gas over the surface of a body is determined with a high accuracy
through the solution of the problem of the interaction of a supersonic jet with the body. Numerical solutions of
several variants of this problem have now been obtained. They are all rather laborious and presume the use
of a computer. A simple means of calculating the pressure of a jet on an obstacle is Newton's method. In
flows containing shock waves, however, the possibilities of its application are limited.

Since one is not always able to obtain the pressure distribution at the surface of the body, and hence to
make use of the dependences (1), one often uses the method of determining the total force based on the use of
the momentum law. When using this law one oftenknows the parameters of the gas at the boundaries of a cen-
trol region assigned in the stream, This fact complicates the obtainment of a calculating dependence for the
force acting on an obstacle of finite size, since one must make certain assumptions about the character of the
gas motion at those boundaries of the region where the flow parameters are unknown.

We will consider a scheme of flow when a jet interacts with a spherical obstacle whose transverse size
is comparable with the diameter of the jet (Fig. 1). In this case a compression shock 5, which interacts with
the "hanging" shock 3 of the free jet, forms ahead of the obstacle. A reflected shock 4 and a contact surface
6 are formed as a result., The gas passing through the "hanging" and reflected compression shocks remains
supersonic, as a rule, while the gas passing through the central compression shock becomes subsonic. The
reflected shock interacts with the jet boundary at the point F, producing a bend in it and spreading of the
stream,

We will apply the momentum law to the region bounded by the nozzle cut AA, the free boundary AF of the
jet, the annular surface FE, and the surface EO of the obstacle:

{ 1000 + (p — pr)nldS = 0. @)
S

If one considers that vy, = 0 at the boundary of the jet and the surface of the body, and one designates the reac-
tion of the jet on the obstacle as

N= | (0— punss, (3)
Seo
then one can rewrite (2) in this form:
Ne=— { 1ov0, + (p,— pryn1 dS — { [o00, -+ (p — pr) Tl dS. @)
Saa SrE
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Fig. 1. Scheme of interaction of a jet with an obstacle: 1) nozzle; 2) jet bounda-
ry; 3) "hanging" shock; 4) reflected shock; 5) central shock; 6) contact surface;
7) obstacle.

Fig. 2. Dependence of axial force N* on distance x between nozzle and obstacle
(a: calculation; b: experiment): 1) M, = 2.1, n =2, 64 =10°; 2) M, =2, n = 3,5,
6a=10°3) My =2, n=4, 6g =15° 4) My = 2,1, n =4, g = 15°,

In Eq. (4) the first term equals the nozzle thrust P, i.e.,

P=— [ lpoo, + (o, — pr)n1dS;
Saa
then we have
N=P— [ (pov,+(p—pu)mds. ©)
SFE

We project the latter equation onto the x axis,

N=P— | [p0,0,+ (p— pu)siny] dS = P —Q, (v,) yy— PaySresiny + puSresiny, (6)
SFE

where 7 is the angle of inclination of the generatrix of the annular surface to the jet axis and (vx)ay and Pgyare
the average values of the parameters in the cross section FE, defined as the halfsum of the corresponding
quantities at the points F and E. Such a definition of them is justified by the nearly linear pressure distribution
in the cross section FE,

Normalizing all the quantities Q,v, (the dynamic term of the thrust), and considering that
Sresiny = Sp —Sg,

we obtain the expression for N* in the following form:

. 1 . i E(Mp)cosﬁp—i—E(ME)cosGE_

=1+ EMZ  kMin + 2 (M,)
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where the radial coordinates are normalized to the nozzle radius at the exit.

As follows from the latter dependence, to calculate N* one must know the parameters of the jet behind
the central and reflected compression shocks and the Mach number M at the point E on the surface of the sphere
in addition to the flow parameters at the nozzle cut. In this connection we suggest the following calculation
sequence,

1. The position of the point T on the "hanging" compression shock is assigned. (The flow in the free jet
is assumed to be known,) Its vicinity is calculated.

2. The central compression shock is approximated by a quadratic parabola, the coefficients of which are
determined through the parameters of the jet at the points T (the coordinates and angle of inclination of the
shock) and H (the angle of inclination of the shock). The parameters at the point H are determined.
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3. The reflected shock TF is approximated by a straight line.
4, 'The joint of intersection of the shock TF with the boundary of the jet is determined.

5, From the condition of equality of the flow rates through the central shock and the cross section TD one
finds the relative position dp of the compression shocks and the spherical obstacle,

8rp = ng (M) , ]
rrigMr)or sinbr 4 g (Mp ) 64 5in 0p] ®

where the quantities with an index T pertain to the flow parameters on the side of the subsonic region.
The Mach number Mp is either estimated from the modified Newton's equation
1t (Mp) = sin20p ' 9)

or is found from the momentum law applied to the region bounded by the shock TH and the generatrix TD. In
addition, to determine the quantity My one can use the condition

(pv,)rp == const.

All three variants of the determination of Mp give close results.

6. The Mach number My, is determined either from Eq. (9) or with the condition that the parameters of
the point E are critical. In the latter case

k

2 h—1
MEZI, TI:(ME):]:m] . (10)

7. The total force acting on the spherical obstacle is calculated from Eq. (7).

The functions N*(x) obtained by calculation and experimentally for an air jet (k = 1.4) flowing onto a
sphere of radius R/r, = 2.4 with a transverse size ry/rq = 1.5 are presented in Fig, 2. As follows from the
graphs, the greatest disagreement between the experimental and calculated data does not exceed 15%.

It should be noted that the flow scheme under consideration characterizes a mode of stable interaction
of the jet with the obstacle. It is known [2] that at a certain location of the obstacle in the jet the stable char-
acter of the flow is disrupted; The compression shocks oscillate ahead of the obstacle with a high frequency.
The location x+ at which the unstable flow begins can be determined from the empirical dependence

xy=14M, Vi (1.26—0.17M,).

NOTATION

is the ratio of specific heats;

is the Mach number;

is the force of action of jet on obstacle;

is the degree of underexpansion;

is the thrust;

is the pressure;

is the mass flow rate;

is the radial coordinate;

is the area;

is the velocity;

is' the angle of inclination of velocity vector to jet axis;

is the density;

is the ratio of stagnation pressures at compression shock;
is the relative gas flow rate through central compression shock;
is the departure of shock from obstacle;

*IavO<UROHU YD B 2R

e(M) = P/Po, EM) =
V/Vmax! TF(M) = p/p()!
gq(M) = S¢/S are the gasdynamic functions,



Indices

a is the nozzle cut;
0 is the stagnation parameter; other letter indices denote characteristic points of the jet.

The linear dimensions are normalized to the nozzle radius at the exit,
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WAVE STRUCTURE OF A SUPERSONIC JET DISCHARGING
INTO AN OPPOSING SUPERSONIC STREAM

E. 1. Sokolov and V. N. Uskov ‘ UDC 532.525.2:533.6.011,72

A similarity parameter is suggested for the longitudinal dimensions of the wave structure of a
supersonic underexpanded jet discharging into an opposing supersonic stream, and empirical
equations are obtained for the calculation of these dimensions,

A number of reports devoted to the experimental investigation of the discharge of a supersonic jet into an
opposing supersonic stream are presently known [1-6]. These investigations made it possible to establish the
existence of two types of axisymmetric interaction of a jet with an opposing stream. If the underexpanded jet
is retarded within the limits of the first barrel then an interface 1 concave to the jet (departing to infinity)
and a disconnected bow shock wave 2 (type I flow) develop in the stream. Ahead of the surface, which is an
impermeable barrier to the jet, a middle compression about 3 forms in the latter (Fig. 1). Near the bow sur-
face of the body a circulation zone, closed or open depending on P = pga/pTe and D = dy,/dg develops with a
pressure p different from p, [2]. In flow of type II (penetration mode), observed with n ~ 1, the retardation
of the jet occurs far ahead of the body, in its main section. The interaction of the jet and the stream has a
nonsteady character. These types of flow are also observed in a rarefied stream [5, 6],

The wave structure formed in type I flow is analyzed below, A universal parameter of geometrical simi-
larity of the longitudinal dimensions of the developing wave structure is suggested on the basis of the results
of [1-4] and the experimental data of the authors. The presence of an infinite concave interface makes type I
flow qualitatively similar to the well-studied flow when an underexpanded jet escaping into a flooded space with
a pressure pg acts on an infinite plane barrier. It is known [7] that in the case of the interaction with a barrier
the introduction of the parameter N = Mg/kn makes it possible, by using the distance h to the barrier as the
characteristic dimension, to obtain an empirical dependence connecting the standoff of the middle shock
formed in the jet ahead of the barrier with its location and with the discharge parameters. On the basis of
the indicated qualitative analogy of the processes, we apply the complex N to the analysis of experimental data
on the location of the shock waves and the interface in the discharge of a jet into an opposing stream. The
range of the parameters under consideration is given in Table 1, The distance xpy, to the middle shock is used
as the characteristic geometrical dimension in the investigated flow. This distance is calculated from the
condition of equality of the stagnation pressures on the sides of the jet and the stream at the common critical
point R (Fig, 1), When the distribution of Mach numbers M along the axis of the free jet is known this condi-
tion leads to the following equations for the determination of xm:
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